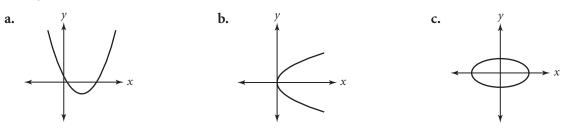
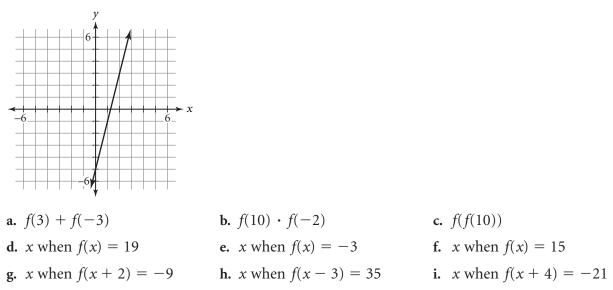
Lesson 4.1 • Interpreting Graphs


Name	Period	Date

- **1.** Describe the pattern of the graph of each of the following situations as the graphs are read from left to right as *increasing, decreasing, increasing and then decreasing,* or *decreasing and then increasing.*
 - **a.** The height of a child at birth and on each birthday from age 1 to age 6
 - **b.** The balance that is due on a home mortgage from the date the house was purchased until it was sold 8 years later
 - **c.** The height of a ball that is thrown upward from the top of a building from the time it is thrown until it hits the ground
 - **d.** The monthly electric bill for August of one year to July of the next year for a family living in Atlanta, Georgia, in a home with central air conditioning. (Assume that July and August are the hottest months and that the family uses natural gas for heating.)
 - e. The value of a car from the time it was purchased as a new car to the time it was traded in 5 years later
- **2.** For each of the situations described in Exercise 1, describe the real-world meaning of the vertical intercept of the graph.
- 3. Sketch a graph to match each description.
 - a. Decreasing steadily throughout, first slowly and then at a faster rate
 - **b.** Increasing rapidly at a constant rate, then suddenly becoming constant, then decreasing rapidly at a constant rate
- **4.** Sketch what you think is a reasonable graph for each relationship described. In each situation, identify the variables and label your axes appropriately.
 - **a.** The money you earned in a week compared to the number of hours you worked in the week
 - **b.** The temperature of a hot drink sitting on your desk
 - c. Your speed as you cycle up a hill and down the other side
 - d. The amount of postage charged for different weights of letters
 - e. The intensity of light available for reading compared to your distance from the reading lamp
 - **f.** The height of a hot dog wrapper after it is released by your little brother from the top row of a football stadium

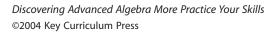
Lesson 4.2 • Function Notation


Name _____ Period _____ Date _____

1. Determine whether or not each graph represents a function. Explain how you know.

2. Find each of the indicated function values.

- **a.** If $f(x) = -\sqrt{4x+1}$, find $f\left(-\frac{1}{4}\right)$, f(0), f(0.75), f(2), and f(12). **b.** If $f(x) = -x^2 + 3x + 5$, find f(-3), f(0), f(2), f(5), and f(8). **c.** If $f(x) = \frac{2}{x-4}$, find f(-4), f(0), f(5), f(8), and f(24).
- **3.** Use the graph below to find each of the following.


- 4. Define variables and write a function that describes each situation.
 - a. You drive on an interstate highway with your cruise control set at 65 miles per hour and do not need to stop or alter your speed.
 - **b.** You rent a small moving van to move your belongings to your new apartment. The rental company charges \$45 a day plus \$0.22 a mile to rent the van.

Lesson 4.3 • Lines in Motion

Name	Period	Date
1. Describe how each graph t	ranslates the graph of $y = f(x)$.	
a. $y = f(x) + 5$	b. $y = f(x) - 3$	c. $y = f(x - 2)$
d. $y = f(x + 6)$	e. $y = f(x + 4) - 2$	f. $y = 5 + f(x - 7)$
2. Find each of the following.		
a. $f(x + 1)$ if $f(x) = 3x$	b. $f(x-2)$	if f(x) = -4x
c. $3 + f(x + 4)$ if $f(x) = 2$	d. $-4 + f(x)$	(x + 3) if $f(x) = -x$
e. $f(x-5)$ if $f(x) = 2x + $	1 f. $3 + f(x - x)$	- 6) if $f(x) = 8 - x$
3. Write an equation for each	line.	
a. The line $y = 2.5x$ transle	ated up 4 units	
b. The line $y = -1.2x$ tran	slated right 3 units	
c. The line $y = -x$ transla	ted up 5 units and left 2 units	
d. The line $y = \frac{1}{2}x$ translate	ed down 1 unit and right 4 un	its
	own at right. Write an equatio the function has been translat	A
a. y	b. <i>y</i>	

-8

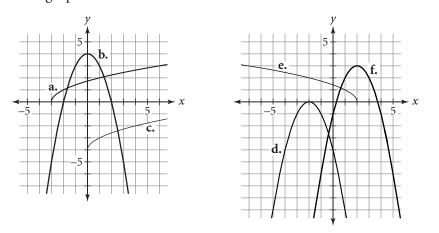
d.

c.

Lesson 4.4 • Translations and the Quadratic Family

Name	Period	Date		
1. Describe the translations of the graph of $y = x^2$ needed to produce the graph of each equation.				
a. $y = x^2 - 6$	b. $y = (x + 5)^2$	c. $y = x^2 + 2.5$		
d. $y = (x - 10)^2$	e. $y = (x - 3)^2 - 9$	f. $y = (x + 7.5)^2 + 2.5$		
2. Find the vertex of each parabo	a.			
a. $y = x^2$	b. $y = x^2 + 3$	c. $y = x^2 - 4$		
d. $y = (x - 2)^2$	e. $y = (x + 3)^2$	f. $y = (x+1)^2 + 5$		
g. $y = (x - 4)^2 - 10$	h. $y = 4 + (x - 7)^2$	i. $y = -8 + (x + 5)^2$		
3. Each parabola described is the each parabola and sketch its gr		ation for		
a. The parabola is translated le	ft 3 units.			
b. The parabola is translated u	p 1 unit.			
c. The parabola is translated ri	ght 5 units.			
d. The parabola is translated d	own 4 units.			
e. The parabola is translated le	e. The parabola is translated left 4 units and up 2 units.			
f. The parabola is translated ri	f. The parabola is translated right 2 units and down 3 units.			
4. Describe what happens to the situations.	graph of $y = x^2$ in the following	ng		
a. y is replaced with $(y + 1)$.	b. x is replaced	l with $(x-5)$.		
c. x is replaced with $(x + 3)$.	d. y is replaced with $(y - 6)$.			
5. Solve.				
a. $x^2 = 49$	b. $x^2 + 6 = 31$	c. $x^2 - 12 = 52$		
d. $(x+4)^2 = 81$	e. $(x-3)^2 = 100$	f. $(x+7)^2 = 144$		
g. $x^2 = 17$	h. $x^2 - 11 = 19$	i. $(x+2)^2 = 13$		
j. $(x+4)^2 - 5 = 31$	k. $14 + (x + 12)^2 = 35$	1. $-20 + (x - 5)^2 = 3$		

Lesson 4.5 • Reflections and the Square Root Family

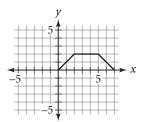

Name

Period

- Date
- 1. Describe what happens to the graph of $y = \sqrt{x}$ in each of the following situations.
 - **a.** x is replaced with (x + 6).
- **b.** y is replaced with (y 5).

d. x is replaced with (x - 8).

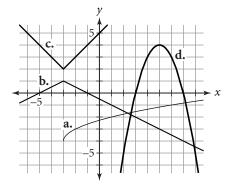
- c. y is replaced with (y + 1).
- **2.** Each graph below is a transformation of the graph of either the parent function $y = x^2$ or the parent function $y = \sqrt{x}$. Write an equation for each graph.


3. Given the graph of y = f(x), draw a graph of each of these related functions.

a.
$$y = -f(x)$$
 b. $y = f(-x)$ **c.** $y = -f(-x)$

4. Solve each equation for *y* to get two separate functions that could be entered into a graphing calculator. In each case, label the equations as Y1 and Y2. Then combine both functions to create a single relation that involves *x* and *y*.

a. $(y+2)^2 = x$ **b.** $y^2 = x+2$ **c.** $(y+1)^2 = x-6$


- **5.** Use the function $h = -4.9t^2 + d$ to answer each question. (Round your answers to the nearest tenth of a second.)
 - **a.** If a ball is dropped from a height of 500 meters, how long will it take the ball to reach a height of 200 meters?
 - **b.** If a ball is dropped from a height of 175 meters, how long will it take the ball to reach a height of 50 meters?
 - **c.** If a ball is dropped from a height of 90 meters, how long will it take the ball to hit the ground?

Lesson 4.6 • Stretches and Shrinks and the Absolute-Value Family

Name	Period	Date

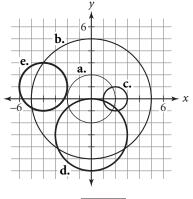
1. Each graph is a transformation of one of the parent functions you've studied. Write an equation for each graph.

- **2.** Describe the transformations of the graph of y = |x| needed to produce the graph of each equation.
 - **b.** y = -|x| **c.** y = |-x|**a.** y = |x - 3|d. $y = \left| \frac{x}{4} \right|$ e. y = 3 |x|f. y = |3x|g. y = -|x| + 5h. y = |x + 2| - 1i. $y = 1.5 \left| \frac{x}{2} \right|$ j. $\frac{y}{0.5} = -|x|$ k. y = -3 |x + 4| + 6l. $\frac{y}{2} = |x - 1| - 2$
- **3.** Find the vertex of the graph of each equation in Exercise 2 and sketch the graph.
- 4. Solve.

5.

a. $ x = 9$	b. $ x + 2 = 5$	c. $ x-5 -7=0$
d. $ x + 2 + 5 = 4$	e. $3 x-5 -2=10$	f. $\left \frac{x}{2}\right + 5 = 12$
Solve each equation for <i>y</i> .		
$\gamma x $		y

- **a.** $\frac{y}{2} = \left|\frac{x}{4}\right|$ **b.** $y 2 = -4(x + 1)^2$ **c.** $\frac{y}{-3} = \sqrt{x} + 1.5$ **d.** $\frac{y 3}{2} = (x + 1)^2$ **e.** $\frac{y + 1}{-3} = \sqrt{x + 2}$ **f.** $\frac{y 5}{3} = \left|\frac{x + 2}{4}\right|$


Lesson 4.7 • Transformations and the Circle Family

Name	Period	Date	

1. Solve each equation for *y* to get two separate equations that could be entered into a graphing calculator. In each case, label the two equations as Y₁ and Y₂.

a. $x^2 + y^2 = 4$ **b.** $4x^2 + y^2 = 9$ **c.** $3x - 2y^2 = 1$

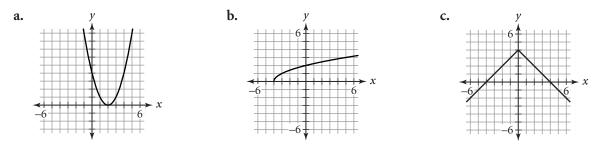
2. Write an equation for each circle.

- **3.** If $f(x) = \sqrt{1 x^2}$, write an equation for each of the following related functions.
 - **a.** -f(x) **b.** f(-x) **c.** 2f(x) **d.** f(2x)
- **4.** Without graphing, find the *x* and *y*-intercepts of the graph of each equation.

a.
$$x^2 + y^2 = 1$$

b. $y = \sqrt{1 - x^2}$
c. $y = -\sqrt{1 - x^2}$
d. $y = 3\sqrt{1 - x^2}$
e. $y = -2\sqrt{1 - x^2}$
f. $y = \sqrt{1 - (2x)^2}$
g. $y = -2\sqrt{1 - (4x)^2}$
h. $y = -\sqrt{1 - (\frac{x}{3})^2}$
i. $y = 2\sqrt{1 - (\frac{x}{4})^2}$

- **5.** Write an equation for each transformation of the unit circle, and identify its graph as a circle or an ellipse. Then sketch the graph.
 - a. Replace x with (x 2).b. Replace y with (y + 4).c. Replace y with $\frac{y}{3}$.d. Replace x with $\frac{x}{4}$.e. Replace x with $\frac{x}{2}$ and y with $\frac{y}{2}$.f. Replace x with $\frac{x}{4}$ and y with $\frac{y}{3}$.


Lesson 4.8 • Compositions of Functions

Name		Period	Date
1. The functions f and	d g are defined by se	ets of input and output v	<i>r</i> alues.
$f = \{(5, 0), (-1, 1), (-3, 4), (1, 2), (3, 4), (-2, 6)\}$			
$g = \{(4, -1), (0, -1)\}$	-2), (1, -1), (2, -2)	$, (6, 0) \}$	
a. Find $f(-3)$, $f(1)$), and <i>f</i> (5). b. Fin	d $g(0)$, $g(2)$, and $g(4)$.	c. What is the domain of f ?
d. What is the ran	ge of g? e. Fin	d $f(g(4))$.	f. Find $g(f(-3))$.
g. Find $f(g(f(5)))$.	h. Fin	d $g(f(g(0)))$.	
2. Use these three functions to find each value: $f(x) = -3x + 5$, $g(x) = (x - 2)^2$, $h(x) = x^2 + 4$.			
a. $f(x + 2)$	b. $g(2x) + 1$	c. $h(x-1) + 3$	d. $f(g(6))$
e. $h(f(7))$	f. $g(h(-5))$	g. $f(g(h(-2)))$	h. $g(h(f(4)))$
i. $h(g(f(0)))$	j. <i>f</i> (<i>h</i> (<i>a</i>))	k. $h(f(a))$	1. $g(h(a))$
2 Ean analy group had			

3. For each graph below:

i. Write an equation for the graph.

ii. Write two functions, f and g, such that the figure is the graph of f(g(x)).

- **4.** Marla, Shamim, and Julie went out for dinner together. The sales tax on the meal was 6%, and they agreed to leave a 15% tip. Marla thought they should calculate the tip by finding 15% of the total bill, including the sales tax. Shamim thought they should calculate the tip by finding 15% of the bill before the tax was added. Julie thought it wouldn't make any difference. Let *x* represent the cost of the meal in dollars before tax and tip are added.
 - **a.** Find a function f that gives the cost of the meal, including sales tax but not the tip.
 - **b.** Find a function *g* that gives the amount of the tip calculated the way Shamim suggested.
 - **c.** Use composition to find a function that gives the amount of the tip calculated the way Marla suggested.
 - **d.** If the cost of the meal before tax was \$50, find the amount they will leave as a tip, calculated Marla's way and Shamim's way.